If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x+x^2=6000
We move all terms to the left:
40x+x^2-(6000)=0
a = 1; b = 40; c = -6000;
Δ = b2-4ac
Δ = 402-4·1·(-6000)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-160}{2*1}=\frac{-200}{2} =-100 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+160}{2*1}=\frac{120}{2} =60 $
| 23-10a+18=10a-11 | | 7d+10d=3 | | -1/3+3/5x=-1/2 | | 11+8g=-53 | | 9w+28=82 | | N=2/5(m+7);m | | 9q=162 | | (x-3)+5x=12 | | 7w+74=193 | | 5n=6-n | | 9y-5=2y+16 | | w+2.5=4.69 | | u+3.29=7.63 | | r+-7=-7 | | 7t-69=8t-90 | | 9s-14=22 | | 6f+9=10f-7 | | -9(m+89)=-45 | | z/7+42=45 | | b/9=-15 | | 5(b-5)=20b | | -3x+34=-6x+58 | | r+2/6=r-2 | | 10-4x=5-2x | | 8r-r=6 | | 16x+35=5x+90 | | 7(x+6)=4x-(24-4x) | | -3(x+9)=15) | | 2z+18=11z | | 1=25−4k | | 2x-29000+x=211000 | | 1=v/2-1 |